日韩无码国产一区|国产成人按摩在线|婷婷激情丁香十月|日本有一道在免费|亚洲免费不卡视频|熟妇一区二区三区|综合伊人中文字幕|亚洲色小说综合网|av高清不卡无码|成人免费视频观看

當(dāng)前位置: 首頁 » 配件關(guān)注 » 安防配件 » 正文

AI十字路口下,邊緣技術(shù)應(yīng)用正當(dāng)時

放大字體  縮小字體 發(fā)布日期:2022-10-31  瀏覽次數(shù):258
      云 側(cè)還是邊側(cè),AI下的時代命題。
 
  隨著5G、人工智能、大數(shù)據(jù)、AIoT等前沿技術(shù)的發(fā)展,海量數(shù)據(jù)接踵而至,各種云計算開始成為數(shù)據(jù)采集、分析和決策的主流,當(dāng)市場都一致認(rèn)為這是風(fēng)口的時候,邊緣技術(shù)卻以“側(cè)翼”飛出并突圍,一場關(guān)乎AI的新征也由此開始。
 
  “瓜熟蒂落”后,邊緣計算的機(jī)會
 
  邊緣技術(shù),不止于安防,但安防是其催生最快,應(yīng)用最完善的產(chǎn)業(yè)之一,瓜熟蒂落與水到渠成的場景,讓AI外來者對安防的邊緣技術(shù),信心倍增,先看下這個市場有多大。
 
  不久前深圳召開了一場邊緣計算盛會,大會主題為“以邊緣的力量”,記者有幸見證盛況,現(xiàn)場好奇并獲知了許多與邊緣計算相關(guān)的話題與現(xiàn)狀。
 
  市場研究機(jī)構(gòu)Trend Force預(yù)測,邊緣計算產(chǎn)品和服務(wù)市場在2018年至2022年將以復(fù)合年增長率超過30%的速度增長,這一增速或有望打開千億級美元的市場空間。另據(jù)Gartner統(tǒng)計分析,到2025年,有75%的數(shù)據(jù)將產(chǎn)生于邊緣,2023年底有50%以上的大型企業(yè)將至少部署6個以上的邊緣計算應(yīng)用,主要用于物聯(lián)網(wǎng)或者沉浸式的邊緣計算體驗。根據(jù)Gartner預(yù)測,2020年全球邊緣計算市場規(guī)模將達(dá)到411.4億美元,到2022年中國邊緣計算市場規(guī)模將達(dá)到325.31億美元。如此可見,邊緣計算產(chǎn)業(yè)正進(jìn)入高速發(fā)展期,產(chǎn)業(yè)生態(tài)逐漸形成。
 
  這是全球市場規(guī)模,而中國市場呢?
 
  2021年,我國邊緣計算市場規(guī)模達(dá)436.4億元,其中邊緣硬件規(guī)模市場為290.2億元,邊緣軟件與服務(wù)市場規(guī)模達(dá)146.2億元。
 
  與云計算的中心化計算不同,邊緣計算更強調(diào)去中心化,即在數(shù)據(jù)產(chǎn)生端進(jìn)行數(shù)據(jù)處理,從而減少延遲。隨著5G等技術(shù)與生活結(jié)合越來越密切,由此產(chǎn)生了大量的數(shù)據(jù)處理需求。邊緣計算正是基于融合的邊緣側(cè)計算、存儲、網(wǎng)絡(luò)能力,就近提供邊緣智能服務(wù),滿足用戶和行業(yè)數(shù)字化所面臨的敏捷連接、實時業(yè)務(wù)、智能應(yīng)用、數(shù)據(jù)安全等關(guān)鍵需求,近年來得到了快速發(fā)展。
 
  需求旺盛,前景廣闊,邊緣計算市場引來眾多科技巨頭布局。梳理邊緣計算市場上的主流玩家,大致可以分為三類:第一類,以華為、新華三為代表的ICT廠商,將基礎(chǔ)軟硬件及技術(shù)服務(wù)同邊緣計算場景融合,實現(xiàn)軟硬一體的邊緣計算私有化部署,并力推云網(wǎng)融合,從而達(dá)到5G云化網(wǎng)絡(luò)與邊緣計算的充分結(jié)合,以滿足各類行業(yè)智能化應(yīng)用所急需的新型邊緣側(cè)高性能網(wǎng)絡(luò)與計算資源。第二類,以亞馬遜、百度、阿里為代表的公有云廠商,將云計算能力向設(shè)備和用戶側(cè)延伸,擴(kuò)充云數(shù)據(jù)中心的外延,將云原生的統(tǒng)一編程模式通過邊緣網(wǎng)關(guān)的能力應(yīng)用到設(shè)備構(gòu)成的邊緣云,主打云邊協(xié)同一體化。
 
  第三類玩家中就以純AI算法公司和運營商為主。前者則以設(shè)備側(cè)的邊緣基礎(chǔ)設(shè)施為中心,逐漸輻射到遠(yuǎn)端的數(shù)據(jù)中心,將一些邊緣側(cè)無法完成的任務(wù)提交到云端完成。而后者通過提供基站的邊緣計算服務(wù)及5G網(wǎng)絡(luò)接入管理。
 
  其實,邊緣計算也非新生事物,為何到現(xiàn)在爆發(fā)?這還是得益于當(dāng)前日臻發(fā)展的物聯(lián)網(wǎng)、大數(shù)據(jù)、人工智能。在近年來物聯(lián)網(wǎng)快速發(fā)展,給傳輸與處理造成了巨大壓力,人工智能對算法、芯片、數(shù)據(jù)處理等也提出了更高的要求。邊緣計算能為人工智能硬件、智能機(jī)器人提供高速交互所需的運算服務(wù),分解了云端在運算能力、傳輸能力上的巨大壓力,這就將邊緣計算的前景和人工智能技術(shù)的前景捆綁到了一起,想象空間驟然加大。這些非常明顯的商業(yè)機(jī)遇,也加速了邊緣計算的風(fēng)潮。從“海大宇”最近兩年都在集中火力輸出邊緣計算就可看出,智能安防時代變了,玩家也變了,2022是該換個姿勢擁抱邊緣計算了。
 
  2022邊緣計算如何造就“新安防”
 
  邊緣計算,全球共識。那什么是邊緣計算呢?
 
  根據(jù)定義,所謂邊緣計算,是指在靠近物或數(shù)據(jù)源頭的網(wǎng)絡(luò)邊緣側(cè),融合網(wǎng)絡(luò)、計算、存儲、應(yīng)用核心能力的開放平臺,就近提供邊緣智能服務(wù),滿足行業(yè)數(shù)字化在敏捷聯(lián)接、實時業(yè)務(wù)、數(shù)據(jù)優(yōu)化、應(yīng)用智能、安全與隱私保護(hù)等方面的關(guān)鍵需求。簡而言之,邊緣計算是跟云計算想對應(yīng)的,云計算是大而全,邊緣計算是小而美。又或者說,云計算負(fù)責(zé)鋪天蓋地,邊緣計算負(fù)責(zé)星羅棋布。
 
  AI時代,千行百業(yè)與萬千場景,探討的是什么?以安防視角看,打通價值發(fā)現(xiàn)、創(chuàng)新使能、持續(xù)運營的應(yīng)用閉環(huán),進(jìn)而從場景中來,到場景中去。
 
  為什么安防行業(yè)是邊緣計算另一次時代機(jī)遇。目前市場上常見的計算方式主要有三種,第一種是云側(cè)智能,就是把采集到的視頻數(shù)據(jù)上云,在云端進(jìn)行算法分析及業(yè)務(wù)應(yīng)用,適合數(shù)據(jù)量大且業(yè)務(wù)較復(fù)雜的場景;第二種是端側(cè)智能,視頻數(shù)據(jù)在采集端即時算法分析后再傳輸,適合場景算法標(biāo)準(zhǔn)化且業(yè)務(wù)較簡單的場景;第三種就是邊側(cè)智能,也叫邊緣計算,視頻數(shù)據(jù)在邊緣側(cè)進(jìn)行算法分析后再上傳云端,適合場景算法需求多且業(yè)務(wù)能自行閉環(huán)的場景。
 
  如今是場景為王的時代,雖然現(xiàn)在云端和終端的算法應(yīng)用,技術(shù)相對成熟了,但是如果所有數(shù)據(jù)都放在云端或者終端,數(shù)據(jù)分析系統(tǒng)復(fù)雜而龐大,成本高,難運維,實時性差,鏈路長,難以滿足千行百業(yè)用戶的定制化需求。換句話說,當(dāng)場景越來越細(xì)分的時候,需要大量的定制化算法、小場景應(yīng)用。此時若再用笨重的大平臺部署方式,成本和架構(gòu)都與現(xiàn)實需求脫軌。于是,邊緣計算能在邊緣側(cè)就解決部分?jǐn)?shù)據(jù)分析的難題,充分銜接端與云的“中間一公里”,滿足碎片化場景的需求,算法也更加多元,市場空間更大,能真正實現(xiàn)細(xì)分場景的業(yè)務(wù)閉環(huán)。
 
  而安防領(lǐng)域智能化面臨的挑戰(zhàn),也從另一面為邊緣技術(shù)的征戰(zhàn),“出師有名”。
 
 
 
  應(yīng)用層面:攝像頭作為傳統(tǒng)安防設(shè)備,不僅清晰度逐年提升,而且對智能化的需求越來越強。安防系統(tǒng)每天產(chǎn)生的海量圖像和視頻信息,導(dǎo)致信息冗余嚴(yán)重,識別準(zhǔn)確率和效率有所不足,應(yīng)用領(lǐng)域也有限。但隨著邊緣計算技術(shù)的逐漸普及,安防領(lǐng)域遇到的難題正在被解決。邊緣計算在視頻監(jiān)控系統(tǒng)的應(yīng)用潛力巨大,主要體現(xiàn)在視頻結(jié)構(gòu)化(視頻數(shù)據(jù)的識別與提?。?、生物特征識別(指紋識別、人臉識別等)、物體特征識別(車牌識別系統(tǒng))等應(yīng)用方向。在人臉識別場景中,在前端攝像頭附近配置邊緣AI計算機(jī),把人臉識別的工作壓力分擔(dān)到前端,解放云計算資源,能夠集中算力資源去做更高效的分析。這不僅大幅降低信息傳輸和后端設(shè)備的負(fù)擔(dān),同時也提升了整個安防系統(tǒng)的響應(yīng)速度,為安防領(lǐng)域倡導(dǎo)“事前預(yù)警、事中制止、事后審查” 的理念提供技術(shù)支持。
 
 
 
  云計算:數(shù)據(jù)傳輸成本高。隨著數(shù)據(jù)量的激增和傳輸帶寬的壓力越來越大,設(shè)備的無線傳輸模塊必須支持高速無線傳輸,這需要更大的功耗,與設(shè)備低功耗的期望相互沖突;很多終端應(yīng)用場景對時延非常敏感。例如平安城市的異常行為檢測、人流檢測等需要實時預(yù)警,不能接受更長的延遲,對網(wǎng)絡(luò)穩(wěn)定性和速率要求會越來越高,進(jìn)一步增加了成本;智能家居場景對安全和隱私的需求也限制了云計算的發(fā)展。越來越多的人們擔(dān)心自己的敏感隱私數(shù)據(jù)被上傳到云上,信息安全沒有保障。邊緣計算可以很好地解決上面這些問題。根據(jù)實際應(yīng)用需求,邊緣計算機(jī)既可以獨立作為智能處理模塊,也可以與云端配合(邊緣端做一些分析處理和過濾,然后交給云端),這樣的方案對優(yōu)化延遲、帶寬和功耗優(yōu)勢明顯。同時,在數(shù)據(jù)傳輸?shù)綌?shù)據(jù)中心之前,通過邊緣計算對數(shù)據(jù)進(jìn)行分析和處理,匿名和加密,可以消除將所有終端數(shù)據(jù)傳輸?shù)皆贫说拿舾行畔ⅲ瑥亩行Ы鉀Q隱私問題。
 
  從目前的應(yīng)用情況來看,邊緣計算在安防行業(yè)的落地主要有兩大場景。
 
  第一類是私有網(wǎng)絡(luò):通常采用邊緣存儲私有化+邊緣計算私有化部署,該方案的優(yōu)點是可內(nèi)網(wǎng)保證數(shù)據(jù)私密性,可打開網(wǎng)絡(luò)出口,把數(shù)據(jù)備份到公網(wǎng)上,本地計算資源不足時也可打開公網(wǎng)出口,業(yè)務(wù)降級到中心計算資源去計算處理。
 
  第二類是互聯(lián)網(wǎng)系統(tǒng),通過公有網(wǎng)絡(luò),邊緣計算可以發(fā)揮出更加強大的部署,很多公有化功能通過在線上的邊緣計算可以很輕易地搭載到安防系統(tǒng)當(dāng)中。這類技術(shù)多用于老舊小區(qū)的安防監(jiān)控智能化改造當(dāng)中,但此類系統(tǒng)對于行業(yè)的功能整合和網(wǎng)絡(luò)設(shè)置都有較高的要求,通常來說大企業(yè)涉及的比較多。
 
  不過無論共有還是私有,邊緣計算目前在我國的安防行業(yè)中已經(jīng)有了大規(guī)模的應(yīng)用,而從各大廠商對其的青睞就可以看出,目前邊緣計算在行業(yè)的核心程度。以龍頭??低暈槔?低曉?017年就發(fā)布了AI Cloud核心框架,通過云中心、邊緣域和邊緣節(jié)點三個核心部分,??低暱梢詫崿F(xiàn)端到中心的邊緣計算+云計算,徹底釋放用戶的網(wǎng)絡(luò)壓力和數(shù)據(jù)分級壓力。
 
  云邊端一體化旨在屏蔽云、邊、端分布式異構(gòu)基礎(chǔ)設(shè)施資源,實現(xiàn)資源統(tǒng)一管理、數(shù)據(jù)自由流通、應(yīng)用一致運行環(huán)境、立體安全保障,滿足用戶多樣化、實時敏捷、安全可靠業(yè)務(wù)需求。
 
  在萬物互聯(lián)和行業(yè)智能化雙重環(huán)境的催生下,云邊端一體化有利于將算力下沉到更接近數(shù)據(jù)產(chǎn)生的現(xiàn)場,同時擁有更低的時延、更低的帶寬占用、更低的部署成本,以及更加安全可靠的數(shù)據(jù)傳輸?shù)葍?yōu)勢,更好地滿足企業(yè)智能化轉(zhuǎn)型的需求。由此不難判斷,在產(chǎn)業(yè)數(shù)字化升級背景下,云邊端一體化的加速演進(jìn),將進(jìn)一步提升數(shù)據(jù)處理效率,避免延遲,強化敏捷性,讓邊緣計算的優(yōu)勢得到更大的展現(xiàn),成為企業(yè)數(shù)字化、智能化轉(zhuǎn)型的優(yōu)選項。
 
  結(jié)束語
 
  對于2022的安防,持續(xù)深耕場景,深挖用戶需求,加大研發(fā)創(chuàng)新,并在邊緣計算生態(tài)位來拓展邊緣計算,以邊緣之力,再一次加速AI時代全場景的落地為王,這或許就是邊緣計算的“安防使命”。

特別提示:本信息由相關(guān)企業(yè)自行提供,真實性未證實,僅供參考。請謹(jǐn)慎采用,風(fēng)險自負(fù)。


[ 配件關(guān)注搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關(guān)閉窗口 ]


 
相關(guān)配件關(guān)注
推薦配件關(guān)注
點擊排行